Systèmes des équations

Nom \qquad Per \qquad

1. Pour les systèmes suivants, réponds aux questions suivantes:
a. Pour quelle valeur des paramètres (notés k ou w) le système admet une solution ?
b. Pour quelle valeur des paramètres (notés k ou w) le système admet un nombre infini de solutions?
c. Pour quelle valeur des paramètres (notés k ou w) le système n'admet pas de solutions ?

$$
k x-2 y=15 \rightarrow y=k x-15 \quad 3 x-k y=6 \rightarrow y=\frac{3}{k} x-\frac{6}{k}
$$

$$
\begin{aligned}
& \text { (1) Whe solution pwoud } \\
& \qquad \frac{k}{2}+4 \Rightarrow k \neq 8
\end{aligned}
$$

(2) Jamois, parce que

$$
\text { the me si } \mathbb{K}=8, \operatorname{les}
$$

ordonneis à l'ongine
ne sevont jamuis égaux

$$
-\frac{15}{2} \neq-7
$$

$$
\text { (3) si } k=8
$$

$$
\begin{aligned}
& 2 x+k y=4 \\
& 3 x-2 y=w
\end{aligned}
$$

$$
E_{q}(1) y=-\frac{2}{k} x+\frac{4}{k}
$$

$$
E_{2}(2) y=\frac{3}{2} x-\frac{w}{2}
$$

$$
-\frac{2}{k} \neq \frac{3}{2} \Rightarrow k \neq-\frac{4}{3}
$$

$$
\text { b) } \operatorname{si} k=-\frac{4}{3} E T
$$

$$
\frac{4}{k}=-\frac{w}{2} \Rightarrow \frac{4}{-\frac{4}{3}}=-\frac{w}{2}
$$

$$
\Rightarrow w=\frac{4 \cdot 2}{\frac{4}{2}}=6
$$

flors b) pour $k=-\frac{4}{3}$ et

$$
w=b
$$

(i) $K=-\frac{4}{3}$ mais $\omega \neq 6$
$\begin{aligned} & 3 x-k y=6 \\ & x+y=2\end{aligned} \rightarrow y=\frac{3}{k} x-\frac{6}{K}$
a) $\frac{3}{k} \neq-1 \Rightarrow k \neq-3$
b) $\operatorname{si} K=-3 \Rightarrow$ Les o. oriqine SONT EGAUX: $-\frac{6}{-3}=2$
c) jamais, parce que si $k=-3$, on est toujours daus
sithahim b) \rightarrow Les 0.O. NE SOMT JAMÅ'S $5 x-2 y=w$
$3 x+k y=12$
(1) $y=\frac{5}{2} x-\frac{w}{2}$
(2) $y=-\frac{3}{k} x+\frac{12}{k}$
a) si $\frac{5}{2} \neq-\frac{3}{k} \Rightarrow k \neq-\frac{6}{5}$
b) si $k=-\frac{6}{5}$ et $-\frac{w}{2}=\frac{12}{k} \Rightarrow-\frac{w}{2}=\frac{12}{-\frac{6}{5}} \Rightarrow$
$\Rightarrow W=\frac{2 \cdot 12}{\frac{6}{\tilde{b}}}=20$
Alors b) pour $k=-\frac{6}{5}$ et $\omega=20$
C) $K=-\frac{6}{5}$ mais $W \neq 20$
2. Lequel des systèmes suivants a la solution (8, 3)?

3. Sachant que $(-3,5)$ est une solution du système $p x+q y=-5$

$$
\begin{array}{ll}
\begin{array}{l}
p x-q y=-25, \text { trove les valeurs des coefficients } p \text { et } q . \\
-3 p+5 q=-5 \\
-3 p-5 q=-25
\end{array} \\
\begin{array}{ll}
-6 p=-30 \Rightarrow & p=5
\end{array} & \begin{array}{l}
p=5 \\
q=2
\end{array} \\
\operatorname{in}(1)-3(5)+5 q=-5 \Rightarrow 5 q=-5+15=10 \Rightarrow q=2
\end{array}
$$

4. Troupe les valeurs de a et b sachant que ($-1,4$) est une solution du système $a x+b y=2$
$a x-b y=-6$
$a x-b y=-6$
ANOTHER WACA: it's very tempting for me to add the equations, as 3 see the +by andLEby, the refore: ELIMINATION!

$$
\begin{array}{ccc}
(1)+(2): & 2 a x=-4 & \text { but } x=-1 \\
-2 a=-4 \Rightarrow & a=2
\end{array} \quad \text { Aloks }
$$

Remember, you can always check:
Does the system

$$
\begin{aligned}
& 2 x+y=2 \\
& 2 x-y=-6
\end{aligned}
$$ solution?

NOTE: perhaps you noticed that ex. 3 and 4 are kind of a mirror image of the exercises that you've done up to now:
We usually know the coefficients of the system, and we find the unknowns x and y
But in 3 and 4 we knew the "unknowns" and we had to find the coefficients of the system
The coefficients of the system are, for now, the silent actors in the solution.
But if you were to use another method, called the matrix method (ha! That's the REAL MATRIX), the system in 4 would look like this:

$$
\left(\begin{array}{cc}
2 & 1 \\
2 & -1
\end{array}\right)\binom{x}{y}=\binom{2}{-6}
$$

Can you see the coefficients?

Matrices are particularly useful if you have larger systems of equations, with lots of unknowns.

